The dependence of lipid asymmetry upon polar headgroup structure.
نویسندگان
چکیده
The effect of lipid headgroup structure upon the stability of lipid asymmetry was investigated. Using methyl-β-cyclodextrin -induced lipid exchange, sphingomyelin (SM) was introduced into the outer leaflets of lipid vesicles composed of phosphatidylglycerol, phosphatidylserine (PS), phosphatidylinositol, or cardiolipin, in mixtures of all of these lipids with phosphatidylethanolamine (PE), and in a phosphatidylcholine/phosphatidic acid mixture. Efficient SM exchange (>85% of that expected for complete replacement of the outer leaflet) was obtained for every lipid composition studied. Vesicles containing PE mixed with anionic lipids showed nearly complete asymmetry which did not decay after 1 day of incubation. However, vesicles containing anionic lipids without PE generally only exhibited partial asymmetry, which further decayed after 1 day of incubation. Vesicles containing the anionic lipid PS were an exception, showing nearly complete and stable asymmetry. It is likely that the combination of multiple charged groups on PE and PS inhibit transverse diffusion of these lipids across membranes relative to those lipids that only have one anionic group. Possible explanations of this behavior are discussed. The asymmetry properties of PE and PS may explain some of their functions in plasma membranes.
منابع مشابه
Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers.
We have used fluorescence-quenching measurements to characterize the partitioning of a variety of indolyl-labeled phospho- and sphingolipids between gel or liquid-ordered and liquid-disordered lipid domains in several types of lipid bilayers where such domains coexist. In both cholesterol-free and cholesterol-containing lipid mixtures, sphingolipids with diverse polar headgroups (ranging from s...
متن کاملHydration of the dienic lipid dioctadecadienoylphosphatidylcholine in the lamellar phase--an infrared linear dichroism and x-ray study on headgroup orientation, water ordering, and bilayer dimensions.
In the phospholipid 1,2-bis(2,4-octadecadienoyl)-sn-glycero-3-phosphorylcholine (DODPC) in each of the fatty acid chains, a rigid diene group is inserted in a position near the polar/apolar boundary that is exceptionally sensitive for membrane stability. DODPC transforms upon gradual dehydration from the liquid-crystalline to a metastable gel state, which rearranges into two subgel phases at lo...
متن کاملIntramolecular interactions in the polar headgroup of sphingosine: serinol.
The intramolecular interactions in the lipid sphingosine have been elucidated through the investigation of the amino alcohol serinol which mimics its polar headgroup. Intricate networks of intramolecular hydrogen bonds involving the hydroxyl groups and the amino group contribute to the stabilisation of five different conformations observed in the broadband rotational spectrum.
متن کاملInterplay between hydration water and headgroup dynamics in lipid bilayers.
In this study, the interplay between water and lipid dynamics has been investigated by broadband dielectric spectroscopy and modulated differential scanning calorimetry (MDSC). The multilamellar lipid bilayer system 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) has been studied over a broad temperature range at three different water contents: about 3, 6, and 9 water molecules per lipid mol...
متن کاملStructural and thermodynamic determinants of chain-melting transition temperatures for phospholipid and glycolipids membranes.
For optimum function, biological membranes need a fluid environment, which is afforded by the liquid-disordered phase of lipids with low chain-melting temperatures or the liquid-ordered phase that is formed by combining high chain-melting lipids with cholesterol. The dependence of chain-melting transition temperature on lipid chain structure is therefore of central importance. The currently ava...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of lipid research
دوره 54 12 شماره
صفحات -
تاریخ انتشار 2013